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We design a new active learning algorithm for regression problems, accommodating a wide range of loss
functions beyond the conventional squared loss. In this setting, unlabeled samples arrive sequentially and
we need to decide whether to inquire about the label of each sample. The goal of active learning is to use a
minimal number of labels to build a prediction model that achieves low losses according to a broadly defined
loss function. Due to the potential complicated structures of the loss function, calculating the optimal label
acquisition policy usually suffers from computational complexity. To address this challenge, we propose a new
active learning algorithm that utilizes the prediction uncertainty within a certain confidence set of candidate
predictors. Compared to previous active learning algorithms, our algorithm is computationally tractable and
efficient by leveraging the local prediction uncertainty. We derive an upper bound for the label complexity of
our algorithm, demonstrating its advantage over traditional supervised learning algorithms in the setting of
contextual stochastic linear optimization (CSLO). Our numerical experiments show the practical value of our
algorithm in the personalized treatment design problem.
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1 INTRODUCTION
When building a general prediction model that predicts the label based on the feature of samples,
the accuracy of the prediction is closely related to the size of the training set. The more observations
we have in the training set, the more accurate the prediction model should be. However, in practice,
data collection can be a time-consuming and expensive process. In some cases, although feature
vectors are usually cheap to acquire, acquiring the label of one sample could take some unignorable
cost or time. For example, in the inventory problem, in order to observe the demand for a new
product, we need to spend some days observing sales and keep inventory levels at a high enough
level to avoid losing sales. In the example of clinical trials, there exist time, ethical, and economic
costs to recruit volunteers to test the effect of drugs. Thus, given a large number of unlabeled
samples, the cost of acquiring the labels of all features could be prohibitively large. As a consequence,
how to efficiently collect the labels of features in order to build a good prediction model is a critical
question.
Algorithms that sequentially acquire the labels of samples for training a prediction model are

in the area called active learning. In this literature, the number of required labeled samples when
attaining the prediction model at a desired performance level is called label complexity. To reduce
the label complexity, active learning algorithms focus on identifying the “informative” features.
Intuitively, features with higher “informational value” will be labeled at a higher probability. By
adapting the label probability to the “informational value” of each sample, the label complexity
of the active learning algorithms is expected to be smaller than the sample complexity of the
supervised learning.

However, the design of the active label acquisition policy depends on the loss function of interest.
The “informational value” of each sample varies when the loss function changes. Most existing
active learning literature for regression problems focuses on the squared loss. However, in practice,
depending on the use of the prediction model, some other loss functions may be more interesting.
For example, if the prediction model is used to predict the unknown parameters for some decision-
making problem, then the decision loss from the decision-making problem is more interesting than
the simple squared loss function. We provide a detailed example in Section 1.1.
When the loss function exhibits complicated structures, designing optimal label acquisition

algorithms becomes computationally challenging. This complexity arises from the difficulty of
integrating the structure of the loss function into the evaluation of each feature’s informational value,
rendering the process computationally intractable. For instance, in scenarios where a prediction
model is used to estimate unknown parameters in decision-making problems, the decision loss can
be nonconvex, making it difficult to incorporate into the label acquisition policy.
In designing active label acquisition policies, most existing literature on active learning for

regression problems employs prediction uncertainty with the goal of minimizing squared loss. This
prediction uncertainty typically represents the maximum ℓ2 norm of the prediction difference for
the predictors within a confidence set. Therefore, when dealing with general loss functions, an
intriguing question arises: Can we directly use prediction uncertainty to estimate the ‘information
value’ of a feature for general loss functions?

If the answer to the above question is yes, we can reduce the computational complexity involved
in calculating the importance of one sample and avoid analyzing the complicated structure of the
loss function.

In our paper, we propose a stream-based active learning algorithm for regression problems under
the general loss function, where the sampling probability of each sample is based on the prediction
uncertainty. This algorithm is particularly interesting for contextual stochastic linear optimization
(CSLO), where the output of the prediction model is used as the parameters for a stochastic linear
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optimization problem. Compared to previous active learning methods, which require analyzing the
structure of the linear programming, our algorithm has a smaller computational complexity by
utilizing the local prediction uncertainty. Our contributions are summarized as follows.
• We propose an importance-weighted active learning algorithm for general loss functions.
Our algorithm achieves computational tractability by assigning labeling probabilities based
on prediction uncertainty.
• We derive the non-asymptotic risk bounds and label complexities for our proposed active
label acquisition policy. Particularly, under the general loss function, we derive the bounds
for the risk and label complexity regarding the general loss function.
• When applying our proposed active learning algorithm in the contextual stochastic linear
optimization problem, we further derive the following theoretical guarantees for the decision
loss:
– When CSLO has general feasible regions, we derive an upper bound for the expected loss
of the prediction model. Under certain conditions, we further derive the sublinear label
complexity which demonstrates the advantage of our algorithm over supervised learning.

– When the feasible region of CSLO is a strongly-convex set, we derive a sharper upper
bound for the expected loss of the prediction model under some natural noise conditions.

– When considering the low-noise conditions of the noise distribution in the CSLO, we derive
a further smaller bound for the label complexity.

• Numerical experiments demonstrate that our active learning algorithm can reduce the size
of the training set when achieving the same level of risk, compared to supervised learning.
Besides, compared to the existing active learning algorithms, our active learning algorithm
based on prediction uncertainty has a better performance.

1.1 Examples of application: Personalized Treatment Design
In this section, we provide an example of the application of the active learning algorithm in
stochastic contextual programming. Stochastic contextual programming involves some unknown
parameters. How to deal with these unknown parameters is the crux of obtaining a good decision
and has been the focus of stochastic optimization studies over the decades. To address these
unknown parameters, one common paradigm is predict-then-optimize, where we use the collected
data to fit a model that predicts the unknown parameters in the downstream optimization problem.
Next, we solve the downstream optimization problem supposing that the prediction is accurate.
This predict-then-optimize framework allows us to provide personalized decisions for each sample
based on its feature information.
Specifically, we focus on its application in personalized treatment planning for patients, where

the careful design of drug doses is crucial, taking into account individual patient conditions.
For instance, post-surgery recovery often involves administering multiple medications, such as
antibiotics, analgesics, and anti-inflammatories. The appropriate dosages of these drugs depend on
factors like the surgery’s extent, the patient’s age, gender, past medical history, and more.

The personalized treatment design problem can be formulated as follows:

min
𝑤∈B𝑛,3

: E[𝑐𝑇𝑁𝑤 − 𝑐
𝑇
𝑃𝑤 |𝑥] (1)

subject to 𝐴𝑤 ≤ 𝐵 (2)
𝑤𝑖,low +𝑤𝑖,median +𝑤𝑖,high = 1,∀𝑖 = 1, ..., 𝑛 (3)

The decision vector𝑤 represents three levels of dosage for each drug. In other words, for each
drug 𝑖 , the possible dosage are𝑤𝑖,low,𝑤𝑖,median, and𝑤𝑖,high. The random vector 𝑐𝑃 ∈ R𝑛,3 represents
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the positive effect of each drug at each dosage level. Similarly, the random vector 𝑐𝑁 ∈ R𝑛,3
represents the negative effect of each drug at each level. For example, 𝑐𝑁,1,high represents the
side-effect on this patient for drug 1 with high volume. These two vectors 𝑐𝑃 and 𝑐𝑁 depend on
the feature vector 𝑥 of the patient. The objective when designing the therapy is to minimize the
expected net cost, which is the expectation of the negative effect minus the positive effect.
The constraints 𝐴𝑤 ≤ 𝐵 represent some constraints between different drugs. For example, if

Drug 1 and 2 cannot be set as high volume at the same time, then we have𝑤1,high +𝑤2,high = 1. If
Drug 2 is high volume, then Drug 3 has to be high volume as well. This constraint can be written
as𝑤3,high ≥ 𝑤2,high.
To solve the above problem and determine the personalized treatment, suppose that we have

a prediction model that outputs effect vector 𝑐𝑇
𝑁

and 𝑐𝑇
𝑃
based on the feature 𝑥 of customers.

However, the prediction of 𝑐𝑇
𝑁
and 𝑐𝑇

𝑃
can be different from the actual effect. To enhance and

refine the existing prediction model, we can ask doctors to collect patient feedback during the
recovery process. Since obtaining feedback from all patients is impractical, the goal is to identify
informational and representative patients.

Thus, we aim to design an active learning algorithm that helps doctors to identify representative
patients and guides their decisions for tracking and adjusting the treatment accordingly.

It is worth noting that to observe the full vector of 𝑐𝑁 and 𝑐𝑃 , doctors do not have to test every
level of doses. It is because, for one type of drug, the effects of different dosages on the same
patient usually have a known relation. For example, for the antibiotics, we have that 𝑐𝑃,1,high = 5ℭ,
𝑐𝑃,1,median = 4ℭ, and 𝑐𝑃,1,low = ℭ, for some ℭ > 0. Thus, as long as doctors observe the effectiveness
of one level, doctors are able to gauge the effectiveness of the other levels.

1.2 Related work
The active learning algorithm for regression problems has been studied in Castro et al. [2005],
Sugiyama and Nakajima [2009], Cai et al. [2016], and Beygelzimer et al. [2009]. Beygelzimer et al.
[2009] propose an importance-weighted algorithm (IWAL) that extends the disagreement-based
methods in the classification problem to the regression problem. It is the first work that considers
the general regression problems. In this work, they calculate the maximum difference between
the loss of all possible labels as the “informational value” of one feature. However, when the loss
function is not the squared ℓ2 norm of the prediction errors, this algorithm becomes computationally
challenging when calculating the importance weight for one feature.

As illustrated in Section 1.1, one of the motivations for considering the general loss function in
active learning arises from the contextual stochastic linear optimization. In CSLO, when evaluating
prediction models, instead of considering the prediction error, it is more natural to directly consider
the cost of the decisions induced by the predicted parameters. This loss is called Smart Predict-then-
Optimize (SPO) loss in [Elmachtoub and Grigas, 2022]. In this case, ideally, we aim to evaluate the
uncertainty of one feature regarding the SPO loss, which is intricate due to its non-convexity and
discontinuity.
To address the intractability of the SPO loss in active learning, [Liu et al., 2023] proposes a

margin-based approach that is based on the concept of distance to degeneracy. They demonstrate
the advantage of considering SPO loss in the active learning framework both theoretically and
empirically. However, their approach relies on the accessibility of the margin information, which
may be computationally challenging when the feasible region is complicated. Furthermore, their
method disregards the difference between the informational values of the near-degeneracy samples.

Different from the approach in [Liu et al., 2023], our general active learning algorithm does not
depend on the margin structure. This empowers our algorithm with computational advantages
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when the feasible region is non-polyhedron or complicated. Our theoretical and numerical results
further demonstrate the advantage of our active learning algorithm.

2 IMPORTANCE-WEIGHTED ACTIVE LEARNING FOR VECTOR-VALUED REGRESSION
In this section, we introduce the importance-weighted active learning algorithm in the general
setting of vector-valued regression. We first introduce the notation and preliminaries of vector-
valued regression and then present our algorithm and its analysis.

2.1 Preliminary knowledge about active learning
Let 𝑥 ∈ X denote a generic feature vector, whereX ⊆ R𝑝 is the feature space. The label, or response,
vector is denoted by 𝑐 ∈ C ⊆ R𝑑 .1 We assume there is a fixed but unknown distribution D over
pairs (𝑥, 𝑐) living in X × C.

Our goal is to learn a prediction function ℎ : X → R𝑑 that predicts the associated label based on a
given feature vector. We assume that there is a hypothesis classH of predictor functions ℎ and it is
well-specified, whereby E𝑐 [𝑐 |𝑥] ∈ H . For simplicity of exposition, we assume thatH is a finite class,
and the cardinality ofH is denoted by |H |, but our analysis can be extended to classes with finite
pseudo-dimension by standard covering arguments ( See [Cortes et al., 2010, Wainwright, 2019] for
examples). Throughout this section, we assume that the learning algorithm is based on specifying
a loss function ℓ (·, ·) : R𝑑 × C → R+ for regression, where R+ denotes the nonnegative real space.
For example, a common choice is the squared ℓ2-norm, namely ℓ (𝑐, 𝑐) = 1

2 ∥𝑐 − 𝑐 ∥
2
2. Given the choice

of loss function, the (expected) risk of a predictor ℎ ∈ H is defined by 𝑅ℓ (ℎ) := E[ℓ (ℎ(𝑥), 𝑐)], and
the corresponding minimum risk value is 𝑅∗ℓ := minℎ∈H 𝑅ℓ (ℎ). Given the predictor class H , we
use Ĉ to denote the space of the predicted labels, namely, Ĉ := {𝑐 ∈ R𝑑 : 𝑐 = ℎ(𝑥), for some 𝑥 ∈
X and ℎ ∈ H}. For loss function ℓ , we define the maximum loss by 𝜔ℓ (Ĉ, C) := sup𝑐,𝑐∈C ℓ (𝑐, 𝑐). We
further define the bound of the label space by 𝜌 (C) := max𝑐∈C ∥𝑐 ∥.
The broad goal of active learning is to find a “good” predictor from the hypothesis class with a

small number of labeled samples. Compared to the standard supervised learning that acquires the
labels of all the samples before training the model, active learning algorithms reduce the label cost
by choosing which samples to label sequentially and interactively. An active learner aims to use
a small number of labeled samples to achieve a small prediction loss. In other words, for a given
𝜖 > 0, the goal of an active learning method is to find a predictor ℎ̂ trained on the data with the
minimal number of labeled samples, such that 𝑅ℓ (ℎ̂) ≤ 𝑅∗ℓ + 𝜖 with high probability. The number of
labels acquired is referred to as the label complexity.

2.2 Importance-Weighted Active Learning Algorithm Based on Prediction Uncertainty
Our importance-weighted active learning algorithm based on prediction uncertainty (IWAL-PU)
is stated in Algorithm 1. The algorithm operates in a sequential learning environment where, at
the beginning of each iteration 𝑡 , we observe a feature vector 𝑥𝑡 that follows the distribution DX .
The algorithm maintains a confidence set of predictors 𝐻𝑡 ⊆ H . Initially, the confidence set of the
predictor is set as the entire label spaceH . To obtain the labeling probability 𝑝𝑡 of this feature 𝑥𝑡 ,
we calculate the maximum ℓ2 norm of prediction difference for the predictors within the current
confidence set 𝐻𝑡 . This difference is characterized by the ℓ2 norm, which is denoted by ∥ · ∥. In this
step, calculating the labeling probability is computationally easy, especially when the confidence
set 𝐻𝑡 contains a finite number of predictors. To decide whether to acquire the label of 𝑥𝑡 , we

1Note that we frequently use the label terminology to be consistent with the active learning literature, and we use 𝑐 to
denote the label (instead of the more standard 𝑦) to be consistent with our application to the contextual stochastic linear
optimization setting.
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Algorithm 1 Importance-Weighted Active Learning Based on Prediction Uncertainty (IWAL-PU)
1: Input: A sequence of slackness 𝑟𝑡 .
2: Set𝑊0 ← ∅, 𝑛0 ← 0, 𝐻0 ←H .
3: for 𝑡 from 1,2,...,𝑇 do

4: Receive 𝑥𝑡 .
5: 𝑝𝑡 ← 1

𝜌 (C) maxℎ1,ℎ2∈𝐻𝑡
{∥ℎ1 (𝑥𝑡 ) − ℎ2 (𝑥𝑡 )∥}.

6: Flip a coin 𝑄𝑡 ∈ {0, 1} with P(𝑄𝑡 = 1) = 𝑝𝑡 .
7: if 𝑄𝑡 = 0 then

8: Do not request a label associated with 𝑥𝑡 .
9: Set𝑊𝑡 ←𝑊𝑡−1, 𝑛𝑡 ← 𝑛𝑡−1.
10: else

11: Request a label 𝑐𝑡 associated with 𝑥𝑡 .
12: Update𝑊𝑡 ←𝑊𝑡−1 ∪ {(𝑥𝑡 , 𝑐𝑡 , 1

𝑝𝑡
)}, 𝑛𝑡 ← 𝑛𝑡−1 + 1.

13: end if

14: Let ℓ̂𝑡 (ℎ) ← 1
𝑡

∑
(𝑥𝑖 ,𝑐𝑖 , 1

𝑝𝑖
) ∈𝑊𝑡

1
𝑝𝑖
ℓ(ℎ(𝑥𝑖 ), 𝑐𝑖 ).

15: Update ℎ𝑡 ← arg minℎ∈𝐻𝑡−1 ℓ̂
𝑡 (ℎ) and ℓ̂𝑡,∗ ← minℎ∈𝐻𝑡−1 ℓ̂

𝑡 (ℎ).
16: Update the confidence set of the predictor 𝐻𝑡 by 𝐻𝑡 ← {ℎ ∈ 𝐻𝑡−1 : ℓ̂𝑡 (ℎ) ≤ ℓ̂𝑡,∗ + 𝑟𝑡 }.
17: end for

18: Return ℎ𝑇 .

flip a coin with probability of heads given by 𝑝𝑡 . If the coin is head-up, then we acquire a label
𝑐𝑡 drawn from the conditional distribution of 𝑐 given 𝑥𝑡 . Then, we add the sample (𝑥𝑡 , 𝑐𝑡 ) and its
corresponding weight 1

𝑝𝑡
into the existing training set𝑊𝑡−1. If the coin lands tails up, then we do

not acquire a label for 𝑥𝑡 . After each iteration, we update the predictor by minimizing the empirical
re-weighted loss, which is defined as

ℓrew (ℎ; (𝑥𝑡 , 𝑐𝑡 , 1
𝑝𝑡
)) :=

{
1
𝑝𝑡
ℓ(ℎ(𝑥𝑡 ), 𝑐𝑡 ), if 𝑥𝑡 is labeled,

0, otherwise.

In Algorithm 1, the random variables at iteration 𝑡 are (𝑥𝑡 , 𝑐𝑡 , 𝑝𝑡 , 𝑄𝑡 ), where the random variable
𝑄𝑡 ∈ {0, 1} represents the outcome of the coin flip that determines if we acquire the label of this
sample or not. For simplicity, we use random variable 𝑧𝑡 ∈ Z := X × C × (0, 1] × {0, 1} to denote
the tuple of random variables 𝑧𝑡 := (𝑥𝑡 , 𝑐𝑡 , 𝑝𝑡 , 𝑄𝑡 ). Thus, 𝑧𝑡 depends on 𝑧1, ..., 𝑧𝑡−1 and the classical
convergence results for i.i.d. samples do not apply to our importance-weighted sampling algorithm.
We define F𝑡−1 as the 𝜎-field of all random variables until the end of iteration 𝑡 − 1, i.e., 𝑧1, ..., 𝑧𝑡−1.
With slight abuse of notation, in Algorithm 1, the re-weighted loss function at iteration 𝑡 can be
rewritten as

ℓrew (ℎ; 𝑧𝑡 ) =
𝑄𝑡

𝑝𝑡
ℓ(ℎ(𝑥𝑡 ), 𝑐𝑡 ).

Given the sampling probability 𝑞𝑡 ,𝑄𝑡 is a Bernoulli random variable that is independent of other
randomness and E[𝑄𝑡 ] = 𝑝𝑡 , the expectation of the re-weighted loss is

E[ℓrew (ℎ; 𝑧𝑡 )] =
E[𝑄𝑡 ]
𝑝𝑡
E[ℓ(ℎ(𝑥𝑡 ), 𝑐𝑡 )] = E[ℓ(ℎ(𝑥𝑡 ), 𝑐𝑡 )] = E[ℓ(ℎ(𝑥), 𝑐)] = 𝑅ℓ (ℎ).

This implies that the expectation of the re-weighted loss is an unbiased estimator for the risk of ℎ.
Thus, under appropriate regularity conditions that are guaranteed by our assumptions, the empirical
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re-weighted loss is expected to converge to the risk, and its minimizer ℎ𝑡 over the confidence set
𝐻𝑡−1 is expected to converge to the true ℎ∗ that minimizes the risk.

In Algorithm 1, the confidence set of the predictor 𝐻𝑡 is constructed by allowing a slackness 𝑟𝑡
for the current re-weighted loss in line 16. By shrinking the value of 𝑟𝑡 , we construct a sequence of
nested sets𝐻𝑡 ⊆ 𝐻𝑡−1 ⊆ ... ⊆ 𝐻0 = H that get smaller as iterations go on. These smaller confidence
sets imply that the maximum prediction error, 𝑝𝑡 calculated in line 5, gets smaller as well. Since 𝑝𝑡
is also the labeling probability, our algorithm becomes more selective as iterations go on.
When deciding the value of 𝑟𝑡 , we need to consider the convergence rate of the loss function.

Intuitively, on the one hand, we would like 𝑟𝑡 to decrease quickly enough to reduce the label
complexity by becoming more selective. On the other hand, 𝑟𝑡 cannot shrink so quickly that the
true predictor ℎ∗ fails to be included in the confidence set. In the next section, we provide an explicit
form for 𝑟𝑡 and analyze the label complexity of our algorithm.

2.3 Convergence and label complexity analysis
To guarantee the convergence of IWAL-PU (Algorithm 1), we make the following assumptions
concerning the loss function and the joint distribution D.

Assumption 1. The loss function ℓ (·, ·) and distribution D satisfy:
(1) (Lipschitz property) ℓ (·, 𝑐) is 𝐿-Lipschitz for all 𝑐 ∈ C, i.e., |ℓ (𝑐1, 𝑐) − ℓ (𝑐2, 𝑐) | ≤ 𝐿∥𝑐1 − 𝑐2∥

for all 𝑐 ∈ C and 𝑐1, 𝑐2 ∈ Ĉ.
(2) (Local error bounds) There exists a function 𝜙 (·, ·) : R+ × X → R+, with 𝜙 (0, 𝑥) = 0 and

𝜙 (·, 𝑥) non-decreasing for all 𝑥 ∈ X, such that for any 𝑥 ∈ X and ℎ ∈ H ,

𝑅ℓ (ℎ) − 𝑅∗ℓ ≤ 𝜖 ⇒ ∥ℎ(𝑥) − ℎ∗ (𝑥)∥ ≤ 𝜙 (𝜖, 𝑥).
Assumption 1.(1) is the Lipschitz property of the loss function. Assumption 1.(2) assumes that

there exists a function 𝜙 (𝜖, 𝑥) such that when the excess risk of ℎ is small, the prediction error
on 𝑥 is small. We further use 𝜙 to denote the uniform upper bound for 𝜙 (𝜖, 𝑥) for all 𝑥 ∈ X, i.e.,
𝜙 (𝜖) := sup𝑥∈X 𝜙 (𝜖, 𝑥). This function 𝜙 was considered in [Liu et al., 2023]. Our function 𝜙 (𝜖, 𝑥) in
Assumption 1.(2) is expected to be smaller than 𝜙 defined in [Liu et al., 2023]. Both functions 𝜙 and
𝜙 can be used in the following analysis, while 𝜙 incorporates the dependence on the feature 𝑥 , and
is able to provide more insights on the label acquisition, which will be shown in Section 4.
Under Assumption 1, Theorem 1 specifies the slackness 𝑟𝑡 and provides the excess risk for our

IWAL-PU algorithm. It also provides an upper bound for the expected number of acquired labels
after 𝑇 iterations.
Theorem 1 (Label Complexity Guarantees for Vector-Valued Regression). Suppose that

Assumption 1 holds. Let 𝛿 ∈ (0, 1] be a given parameter, and set 𝑟𝑡 ← 2𝐿
√︃

ln(2𝑡 |H |/𝛿 )
𝑡

for 𝑡 ≥ 1 and

𝑟0 ← 2𝜔ℓ (Ĉ, C). Then, the following guarantees hold simultaneously with probability at least 1 − 𝛿
for all 𝑇 ≥ 1:
• (a) The excess risk satisfies 𝑅ℓ (ℎ𝑇 ) − 𝑅∗ℓ ≤ 2𝑟𝑇 ,
• (b) The expectation of the number of labels acquired, E[𝑛𝑇 ], deterministically satisfies E[𝑛𝑇 ] ≤∑𝑇

𝑡=1 sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)} + 𝛿𝑇 .
The proof of Theorem 1 is provided in the next section. In Theorem 1, at iteration 𝑡 , the slackness

𝑟𝑡 ≤ Õ(𝑡−1/2), so part (a) indicates that the excess risk converges to zero at rate Õ(𝑇 −1/2). The
order of the upper bound for the number of expected labels, E[𝑛𝑇 ] depends on the function 𝜙 (𝜖, 𝑥),
which further depends on the property of the loss function in Assumption 1.(2). In Example 1, we
provide one simple illustrative example of 𝜙 (𝜖, 𝑥) in the mean estimation problem when we use
the squared ℓ2 norm as the loss function.
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Example 1 (Example of Single Dimension Mean estimation). In this mean estimation problem,
we decide whether to observe the outcome of a random variable 𝑦 ∈ R. Our goal is to predict the mean
of 𝑦, which is denoted by 𝑦. The loss function ℓ is simply the squared loss, i.e., ℓ (𝑦1, 𝑦2) = (𝑦1 − 𝑦2)2.
We denote our estimation result of 𝑦 by 𝑦. We use the importance-weighting algorithm, Algorithm 1, to
reduce the number of acquired labels when achieving a small prediction error ℓ (𝑦,𝑦). At each iteration,
if we decide to acquire the outcome of 𝑦, we observe a random outcome 𝑦 + Y, where Y ∈ R is a noise
term with zero mean. The label complexity in Theorem 1 depends on the function 𝜙 . We consider the
forms of 𝜙 under two different noise conditions.

In the first case, there is no additional assumption for Y. The excess risk for our prediction 𝑦 is |𝑦−𝑦 |2,
so the form of 𝜙 is simply 𝜙 (𝜖, 𝑥) =

√
𝜖 . By Theorem 1, setting 𝛿 ← 1/𝑇 2, the order of the expected

number of acquired labels E[𝑛𝑇 ] is at most
∑𝑇

𝑡=1 Õ(
√
𝑡−1/2) = ∑𝑇

𝑡=1 Õ(𝑡−1/4) ≤ Õ(𝑇 3/4). Combining
this order with the result in argument (a) in Theorem 1, we have that when we inquire 𝑛 labels on
average, the excess squared loss is at most Õ(𝑛− 1

2 ·
4
3 ) = Õ(𝑛− 2

3 ). This order is slower than Õ(𝑛−1), the
typical learning rate of the mean estimation, and the order of minimax lower bound under the squared
loss. Next, we consider a special noise condition to demonstrate a smaller label complexity.

In the second case, we assume that the noise term Y are some random integers from {0,±1,±2, ...,±Λ},
where Λ is a positive integer. In this case, we can reduce label complexity by reducing the search space.
For example, we can reduce the search space to the discrete grid of 𝑦1 + 𝑧, where 𝑧 is an integer. Thus,
when 𝑦 ≠ 𝑦, we have that |𝑦 − 𝑦 | ≥ 1. Therefore, we have that |𝑦 − 𝑦 | ≤ |𝑦 − 𝑦 |2. Therefore, by the
definition of 𝜙 , we have that 𝜙 (𝜖, 𝑥) ≤ 𝜖 . By Theorem 1, setting 𝛿 ← 1/𝑇 2, the order of the expected
number of acquired labels E[𝑛𝑇 ] is at most

∑𝑇
𝑡=1 Õ(𝑡−1/2) ≤ Õ(𝑇 1/2). Combining this order with the

result in argument (a) in Theorem 1, we have that when we inquire 𝑛 labels on average, the excess
squared loss is at most Õ(1/𝑛). This order is faster than the label complexity in the first case. It implies
that the theoretical performance of our active learning algorithm depends on the noise distribution.
Under certain noise conditions, our active learning algorithm can achieve a small label complexity. □

Example 1 shows that the theoretical performance of our algorithm depends on the function 𝜙 .
Whenwe have additional knowledge about noise distribution, the hypothesis class, and the structure
of the loss function, we can derive a smaller function 𝜙 , which will lead to a smaller label complexity.
Particularly, in Section 3, we demonstrate that under certain conditions, in the predict-then-optimize
framework, the label complexity regarding the SPO risk of our active learning algorithm is smaller
than the best known sample complexity for the predict-then-optimize framework.

2.3.1 Proof of Theorem 1. In this section, we provide the proof of Theorem 1.
Recall that for all 𝑡 ≥ 1,

E[ℓrew (ℎ; 𝑧𝑡 ) |F𝑡−1] = E[ℓ (ℎ(𝑥𝑡 ), 𝑐𝑡 )] = 𝑅ℓ (ℎ).

Consider the above applied to both ℎ ∈ H and ℎ∗ and averaged over 𝑖 ∈ {1, . . . , 𝑡} to yield:

𝑅ℓ (ℎ) − 𝑅ℓ (ℎ∗) =
1
𝑡

𝑡∑︁
𝑖=1
(E[ℓrew (ℎ; 𝑧𝑖 ) |F𝑖−1] − E[ℓrew (ℎ∗; 𝑧𝑖 ) |F𝑖−1]) . (4)

For any given ℎ ∈ 𝐻𝑇−1, we denote the discrepancy between the conditional expectation and
the realized excess re-weighted loss of predictor ℎ at time 𝑡 by 𝑍 t

ℎ
, i.e., 𝑍 t

ℎ
:= E[ℓrew (ℎ; 𝑧𝑡 ) −

ℓrew (ℎ∗; 𝑧𝑡 ) |F𝑡−1] − (ℓrew (ℎ; 𝑧𝑡 ) − ℓrew (ℎ∗; 𝑧𝑡 )). Since 𝑍 t
ℎ𝑇

is bounded and E[𝑍 t
ℎ𝑇
|F𝑡−1] = 0, we have

that
∑𝑇

𝑡=1 𝑍
t
ℎ𝑇

is a martingale.
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Thus, for any given ℎ ∈ 𝐻𝑇−1, (4) is equivalently written as:

𝑅ℓ (ℎ) − 𝑅ℓ (ℎ∗) =
1
𝑡

𝑡∑︁
𝑖=1

𝑍 i
ℎ
+ 1
𝑡

𝑡∑︁
𝑖=1
(ℓrew (ℎ; 𝑧𝑖 ) − ℓrew (ℎ∗; 𝑧𝑖 )) . (5)

Before providing the proof of Theorem 1, we first show that the confidence set 𝐻𝑇−1 contains
the true optimal predictor ℎ∗ at each iteration if 𝑟𝑡 satisfies some conditions in Lemma 1.

Lemma 1. Given 𝑇 ≥ 1, if 𝑟𝑡 satisfies that supℎ∈𝐻𝑡−1

�� 1
𝑡

∑𝑡
𝑖=1 𝑍

i
ℎ

�� ≤ 𝑟𝑡 , for any 𝑡 ≤ 𝑇 − 1, then we
have ℎ∗ ∈ 𝐻𝑇−1.

Proof of Lemma 1. Since𝐻𝑇−1 ⊆ 𝐻𝑇−2 ⊆ ... ⊆ 𝐻0, we prove Lemma 1 by induction. Obviously,
we have that ℎ∗ ∈ 𝐻0 = H . Assume that ℎ∗ ∈ 𝐻𝑡 for all 𝑡 ≤ 𝑇 −2. Next, we will show that ℎ∗ ∈ 𝐻𝑇−1.

Since 𝐻𝑇−1 = {ℎ ∈ 𝐻𝑇−2 : ℓ̂𝑇−1 (ℎ) ≤ ℓ̂𝑇−1,∗ + 𝑟𝑇−1}, to show ℎ∗ ∈ 𝐻𝑇−1, it suffices to show that
1

𝑇−1
∑𝑇−1

𝑖=1 ℓrew (ℎ∗; 𝑧𝑖 ) ≤ 1
𝑇−1

∑𝑇−1
𝑖=1 ℓrew (ℎ𝑇−1; 𝑧𝑖 ) + 𝑟𝑇−1.

Since 𝑅ℓ (ℎ𝑇−1) − 𝑅ℓ (ℎ∗) ≥ 0, by (5), we have that

𝑅ℓ (ℎ𝑇−1) − 𝑅ℓ (ℎ∗) =
1

𝑇 − 1

𝑇−1∑︁
𝑖=1

𝑍 i
ℎ𝑇 −1
+ 1
𝑇 − 1

𝑇−1∑︁
𝑖=1
(ℓrew (ℎ𝑇−1; 𝑧𝑖 ) − ℓrew (ℎ∗; 𝑧𝑖 )) ≥ 0.

Since ℎ𝑇−1 ∈ 𝐻𝑇−2, by the condition in Lemma 1, we have 1
𝑇−1

∑𝑇−1
𝑖=1 𝑍 i

ℎ𝑇 −1
≤ 𝑟𝑇−1. Therefore, we

obtain that

1
𝑇 − 1

𝑇−1∑︁
𝑖=1

ℓrew (ℎ∗; 𝑧𝑖 ) ≤
1

𝑇 − 1

𝑇−1∑︁
𝑖=1

ℓrew (ℎ𝑇−1; 𝑧𝑖 ) + 𝑟𝑇−1.

Thus, we obtain ℎ∗ ∈ 𝐻𝑇−1. □

We are ready to provide the proof of Theorem 1.

Proof of Theorem 1. We provide the proof for each part separately.
Part (a). Let us first prove part (a). Indeed, we prove a stronger version of part (a): with probability
1 − 𝛿 , for all 𝑇 ≥ 1, we have

(𝐴): For any ℎ ∈ 𝐻𝑇−1, we have 𝑅ℓ (ℎ) − 𝑅∗ℓ ≤ 2𝑟𝑇 and sup
ℎ∈𝐻𝑇 −1

����� 1𝑇 𝑇∑︁
𝑡=1

𝑍 t
ℎ

����� ≤ 𝑟𝑇 .

We prove Claim (𝐴) by the chain rule of probability. When 𝑇 = 0, part (a) holds by the definition
of 𝑟0 ≥ 2𝜔ℓ (Ĉ, C). Next, we assume that Claim (𝐴) holds for all 𝑡 ≤ 𝑇 − 1 and our goal is to show
that Claim (A) holds for 𝑇 with probability at least 1 − 𝛿

2𝑇 2 . In other words, for any ℎ ∈ 𝐻𝑇−1, we
have 𝑅ℓ (ℎ) − 𝑅∗ℓ ≤ 2𝑟𝑇 and supℎ∈𝐻𝑇 −1

�� 1
𝑇

∑𝑇
𝑡=1 𝑍

t
ℎ

�� ≤ 𝑟𝑇 with probability at least 1 − 𝛿
2𝑇 2 . If it is true,

by the chain rule of probability and taking the union bound over𝑇 ∈ {1, 2, ...,∞}, we will have that
Claim (A) holds for all 𝑇 ≥ 1 with probability at least

1 −
∞∑︁

𝑇=1

𝛿

2𝑇 2 ≥ 1 − 𝛿𝜋2

12
≥ 1 − 𝛿.

Thus, we will obtain Claim (𝐴).
The rest of the proof of part (a) is to show that Claim (A) holds for 𝑇 with probability at least

1 − 𝛿
2𝑇 2 .
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Given any ℎ ∈ 𝐻𝑇−1 ⊆ 𝐻𝑇−2, since Claim (A) holds for 𝑡 ≤ 𝑇 − 1, we have that 𝑅ℓ (ℎ) − 𝑅ℓ (ℎ∗) ≤
2𝑟𝑇−1. Thus, by the definition of 𝜙 , we have that for any 𝑥 ∈ X, ∥ℎ(𝑥) − ℎ∗ (𝑥)∥ ≤ 𝜙 (2𝑟𝑇−1, 𝑥). By
the Lipschitz property of ℓ (·, 𝑐) and the decreasing property of 𝑟𝑡 , we have that for any 𝑖 ≤ 𝑇 ,

|ℓrew (ℎ; 𝑧𝑖 ) − ℓrew (ℎ∗; 𝑧𝑖 ) | =
����𝑞𝑖 (ℓ (ℎ(𝑥𝑖 ), 𝑐𝑖 ) − ℓ (ℎ∗ (𝑥𝑖 ), 𝑐𝑖 ))𝜙 (2𝑟𝑖−1, 𝑥𝑖 )

����
≤
����𝑞𝑖 (ℓ (ℎ(𝑥𝑖 ), 𝑐𝑖 ) − ℓ (ℎ∗ (𝑥𝑖 ), 𝑐𝑖 ))𝜙 (2𝑟𝑇−1, 𝑥𝑖 )

����
≤ 𝐿∥ℎ(𝑥𝑖 ) − ℎ∗ (𝑥𝑖 )∥

𝜙 (2𝑟𝑇−1, 𝑥𝑖 )
≤ 𝐿.

It implies that the loss function ℓrew (ℎ; 𝑧𝑡 ) − ℓrew (ℎ∗; 𝑧𝑡 ) is upper bounded by 𝐿, so we can
apply Azuma’s inequality to the sequence

∑𝑇
𝑡=1 𝑍

t
ℎ
. By taking the average of 𝑍 t

ℎ
, we have that�� 1

𝑇

∑𝑇
𝑡=1 𝑍

t
ℎ

�� ≤ 𝜖, with probability at least 1 − 2𝑒−
𝜖2𝑇
2𝐿2 .

By setting the probability 1 − 2𝑒−
𝜖2𝑇
2𝐿2 = 1 − 𝛿

2𝑇 2 |H |2 , we obtain that 𝜖 ≤ 2𝐿
√︃

ln(2𝑇 |H |/𝛿 )
𝑇

= 𝑟𝑇 . By
applying the union bound over all ℎ ∈ 𝐻𝑇−1 ⊆ H , and all ℎ∗ ∈ H , we have that

sup
ℎ∈𝐻𝑇 −1

����� 1𝑇 𝑇∑︁
𝑡=1

𝑍 t
ℎ

����� ≤ 𝜖 = 𝑟𝑇 ,

with probability at least

1 − |H |2 · 𝛿

2𝑇 2 |H |2 ≥ 1 − 𝛿

2𝑇 2 .

Next, conditioning on the occurrence of this event, we will prove that 𝑅ℓ (ℎ) − 𝑅ℓ (ℎ∗) ≤ 2𝑟𝑇 . Since
Claim (𝐴) holds for all 𝑡 ≤ 𝑇 − 1, it implies that for any 𝑡 ≤ 𝑇 − 1, supℎ∈𝐻𝑡−1

�� 1
𝑡

∑𝑇
𝑖=1 𝑍

i
ℎ

�� ≤ 𝑟𝑡 . Thus,
the condition in Lemma 1 holds, and by Lemma 1, we have that ℎ∗ ∈ 𝐻𝑇−1.

Since ℎ ∈ 𝐻𝑇−1 and ℎ∗ ∈ 𝐻𝑇−1, we have that ℓrew (ℎ𝑇 ; 𝑧𝑡 ) − ℓrew (ℎ∗; 𝑧𝑡 ) ≤ 𝑟𝑇 in (5) and we obtain
that 𝑅ℓ (ℎ) − 𝑅ℓ (ℎ∗) ≤ 2𝑟𝑇 if

�� 1
𝑇

∑𝑇
𝑡=1 𝑍

t
ℎ

�� ≤ 𝑟𝑇 .
Therefore, we obtain that Claim (A) holds for 𝑇 with probability at least 1 − 𝛿

2𝑇 2 .
Part (b). Lastly, we prove part (b). Condition on the event in part (a), the label probability at

iteration 𝑡 is at most

sup
𝑥∈X

𝜙 (2𝑟𝑡 , 𝑥).

Since part (a) happens with probability at least 1 − 𝛿 , the label probability at iteration 𝑡 is at most
sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)} + 𝛿 . Thus, the expectation of the total number of acquired labels is at most∑𝑇

𝑡=1 [sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)} + 𝛿] =
∑𝑇

𝑡=1 sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)} + 𝛿𝑇 . □

3 SMALL LABEL COMPLEXITY FOR CONTEXTUAL STOCHASTIC LINEAR
OPTIMIZATION

In this section, we consider our importance-weighted active learning method for the contextual
stochastic linear optimization problem, which is also referred to as the predict-then-optimize
framework. We first present the motivation of applying this algorithm in the predict-then-optimize
framework in Section 3.2. Next, we analyze the convergence rate and label complexity of IWAL-PU
in Section 3.3. Finally, we demonstrate how to improve these bounds when the feasible region is a
strongly convex set or a polyhedron in Sections 3.4 and 3.5. These results demonstrate a smaller
label complexity than the naive supervised learning approach that acquires labels of all samples.
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3.1 Preliminaries
Here, we introduce the preliminary knowledge about the predict-then-optimize framework. In
particular, we introduce the SPO loss function and the surrogate loss for the SPO loss.

In this setting, label vectors to be predicted are the parameters in the downstream optimization
problem. Particularly, the downstream optimization problem has a linear objective, and the label
vector is the cost vector of the objective. Given the prediction of the cost vector, the deterministic
linear optimization is solved to make a decision. Thus, acquiring a “label" corresponds to collecting
the cost vector data 𝑐 that corresponds to a given feature vector 𝑥 .
Let 𝑤 ∈ 𝑆 denote the decision variable of the downstream optimization problem, where the

feasible region 𝑆 ⊆ R𝑑 is a convex and compact set that is assumed to be fully known to the
decision-maker. We denote the diameter of the set 𝑆 ⊂ R𝑑 by 𝐷𝑆 := sup𝑤,𝑤′∈𝑆 ∥𝑤 −𝑤 ′∥. Given
an observed feature vector 𝑥 , the ultimate goal is to solve the contextual stochastic optimization
problem:

min
𝑤∈𝑆
E𝑐 [𝑐𝑇𝑤 |𝑥] = min

𝑤∈𝑆
E𝑐 [𝑐 |𝑥]𝑇𝑤. (6)

(6) indicates that the downstream optimization problem in the predict-then-optimize framework
relies on a prediction of the conditional expectation E𝑐 [𝑐 |𝑥]. Given such a prediction 𝑐 , a decision
is made by then solving the deterministic version of the downstream optimization problem:

𝑃 (𝑐) : min
𝑤∈𝑆

𝑐𝑇𝑤. (7)

For simplicity, we assume𝑤∗ (·) : R𝑑 → 𝑆 is an oracle for solving (7), whereby𝑤∗ (𝑐) is an optimal
solution of 𝑃 (𝑐).
In the predict-then-optimize framework, given the prediction ℎ(𝑥) for any newly observed

feature vector 𝑥 , our decision is𝑤∗ (ℎ(𝑥)). The ultimate goal of our active learning algorithms is to
select ℎ ∈ H that can lead to optimal decisions. In the predict-then-optimize setting, the loss of
prediction in terms of the downstream decision making is the SPO loss introduced by Elmachtoub
and Grigas [2022], which characterizes the regret in decision error due to an incorrect prediction,
and is formally defined as

ℓSPO (𝑐, 𝑐) := 𝑐𝑇𝑤∗ (𝑐) − 𝑐𝑇𝑤∗ (𝑐),

for any cost vector prediction 𝑐 and realized cost vector 𝑐 . We further define the risk of a predic-
tion function ℎ(·) as 𝑅SPO (ℎ) := E(𝑥,𝑐 )∼D [ℓSPO (ℎ(𝑥), 𝑐)], and the excess risk of ℎ(·) as 𝑅SPO (ℎ) −
infℎ′∈H 𝑅SPO (ℎ′).

Since the SPO loss is non-convex and even non-continuous, instead of minimizing the SPO loss
directly, a common approach is to consider surrogate loss functions ℓ that have better computational
properties and are still (ideally) aligned with the original SPO loss, for example, the SPO+ loss
introduced in [Elmachtoub and Grigas, 2022], which is defined by

ℓSPO+ (𝑐, 𝑐) := max
𝑤∈𝑆

{
(𝑐 − 2𝑐)𝑇𝑤

}
+ 2𝑐𝑇𝑤∗ (𝑐) − 𝑐𝑇𝑤∗ (𝑐).

It is an upper bound on the SPO loss, i.e., ℓSPO (𝑐, 𝑐) ≤ ℓSPO+ (𝑐, 𝑐) for any 𝑐 ∈ Ĉ and 𝑐 ∈ C. Elmachtoub
and Grigas [2022] demonstrate the computational tractability of the SPO+ surrogate loss, conditions
for Fisher consistency of the SPO+ risk with respect to the true SPO risk, as well as strong numerical
evidence of its good performance with respect to the downstream optimization task. Liu and Grigas
[2021] further demonstrate sufficient conditions that imply that when the excess surrogate SPO+
risk of a prediction function ℎ is small, the excess true SPO risk of a prediction function ℎ is also
small.
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3.2 Motivation and algorithm
The motivation for considering the importance weighted active learning algorithm under the SPO
loss is to reduce the label probability of samples that hold less ‘importance’ compared to others.
Intuitively, when observing a particular feature 𝑥 , we can estimate the potential SPO risk associated
with the decision for that sample. If this SPO risk is small, we can strategically reduce the total label
cost by assigning a lower probability to acquire the label of its sample. Lemma 2 below provides an
upper bound for the excess SPO risk on a feature 𝑥 .

Lemma 2 (Bounds for the Excess SPO Risk on a Single Point). Suppose 𝑐 is a random vector,
and E[𝑐] = 𝑐 . For any 𝑐 ∈ C, we have

E[ℓSPO (𝑐, 𝑐) − ℓSPO (𝑐, 𝑐)] ≤ ∥𝑐 − 𝑐 ∥∥𝑤∗ (𝑐) −𝑤∗ (𝑐)∥ .

Proof of Lemma 2. By the definition of the SPO loss, we have that

E[ℓSPO (𝑐, 𝑐) − ℓSPO (𝑐, 𝑐)] = E
[
𝑐𝑇 (𝑤∗ (𝑐) −𝑤∗ (𝑐)) − 𝑐𝑇 (𝑤∗ (𝑐) −𝑤∗ (𝑐))

]
= E

[
𝑐𝑇 (𝑤∗ (𝑐) −𝑤∗ (𝑐))

]
= 𝑐𝑇 (𝑤∗ (𝑐) −𝑤∗ (𝑐)) .

Since 𝑐𝑇 (𝑤∗ (𝑐) −𝑤∗ (𝑐)) ≥ 0, we have that

𝑐𝑇 (𝑤∗ (𝑐) −𝑤∗ (𝑐)) ≤ 𝑐𝑇 (𝑤∗ (𝑐) −𝑤∗ (𝑐)) + 𝑐𝑇 (𝑤∗ (𝑐) −𝑤∗ (𝑐))
= (𝑐 − 𝑐)𝑇 (𝑤∗ (𝑐) −𝑤∗ (𝑐)) ≤ ∥𝑐 − 𝑐 ∥∥𝑤∗ (𝑐) −𝑤∗ (𝑐)∥ .

Thus, we obtain Lemma 2. □

Lemma 2 indicates that given a feature vector 𝑥 , the excess SPO risk on this feature is bounded by
the product of ∥ℎ∗ (𝑥)−ℎ̂(𝑥)∥ and ∥𝑤∗ (ℎ∗ (𝑥))−𝑤∗ (ℎ̂(𝑥))∥. Obviously, when𝑤∗ (ℎ∗ (𝑥)) = 𝑤∗ (ℎ̂(𝑥)),
the decisions are the same, so the excess SPO risk is zero and we do not have to acquire the label of
𝑥 . More interestingly, when the decisions are not the same, Lemma 2 indicates that the SPO risk
can be upper bounded by the norm of the prediction error. This motivates us to use a weighted
sampling approach based on the prediction error of ℎ̂(𝑥). Intuitively, when this prediction error
is small, although we are not confident about picking the optimal decision, we do not have to
acquire that label with a large probability, i.e., the label probability of that sample can still be
small. Thus, considering the prediction error could help us save the label complexity, especially
when the current prediction error is not small enough to distinguish the optimal decision from the
suboptimal.

When applying Algorithm 1 in the predict-then-optimize framework, using the SPO loss directly
is computationally challenging due to its non-convexity. Thus, we use a surrogate loss of SPO
loss, which is continuous and convex. Assumption 2 requires the consistency of the surrogate loss,
which is a basic requirement for choosing the surrogate loss function.

Assumption 2. (Consistency) The uniqueminimizer of the SPO riskℎ∗ is also the uniqueminimizer
of the surrogate risk, and ℎ∗ (𝑥) = E[𝑐 |𝑥] for all 𝑥 ∈ X.

Among all possible convex surrogate loss functions, the SPO+ loss enjoys some merits. First, the
SPO+ loss satisfies Assumption 2 under certain noise conditions, which is studied in [Elmachtoub
and Grigas, 2022]. Second, the function 𝜙 can have a nice form when the distribution D satisfies
some conditions in Section 4. Thirdly, compared to the squared loss, the SPO+ loss incorporates
information from the downstream decision-making problem. In the following sections, we analyze
the label complexity regarding the SPO risk when the surrogate loss function satisfies Assumptions
1 and 2.
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3.3 Small label complexity for SPO risk
In this section, we analyze the label complexity of IWAL-PU regarding the SPO risk. In particular,
based on the risk guarantees in Theorem 1, when the surrogate loss further satisfies the consistency
condition, then Theorem 2 provides the bound for the SPO risk after 𝑇 iterations. To analyze the
bound for the SPO risk, we assume that the marginal distribution density of 𝑥 ,DX is known, which
is denoted by ` (𝑥).

Theorem 2 (SPO risk bounds for IWAL-PU). Suppose that Assumptions 1 and 2 hold. Set 𝑟𝑡 ←
2𝐿
√︃

ln(2𝑡 |H |/𝛿 )
𝑡

for 𝑡 ≥ 1 and 𝑟0 ← 2𝜔ℓ (Ĉ, C). Then, with probability at least 1 − 𝛿 , for all 𝑇 ≥ 1, the
events in Theorem 1 holds and the excess SPO risk satisfies𝑅SPO (ℎ𝑇 )−𝑅∗SPO ≤ 𝐷𝑆

∫
𝑥∈X ` (𝑥)𝜙 (2𝑟𝑇 , 𝑥)𝑑𝑥 .

In Theorem 2, the order of SPO risk depends on function 𝜙 . As will be shown later in Section 4,
the function 𝜙 (𝜖, 𝑥) is a square root function of 𝜖 when the distribution D satisfies some natural
conditions and the surrogate loss is SPO+. Thus, next in Proposition 1, by substituting 𝜙 (𝜖, 𝑥) with
a square root function, we provide the order of the label complexity and the risk bounds.

Proof of Theorem 2. By Lemma 2 and the definition of 𝐷𝑆 , we have that

E[ℓSPO (ℎ𝑇 (𝑥), 𝑐) − ℓSPO (ℎ∗ (𝑥), 𝑐)] ≤ ∥ℎ𝑇 (𝑥) − ℎ∗ (𝑥)∥∥𝑤∗ (ℎ𝑇 (𝑥)) −𝑤∗ (ℎ∗ (𝑥))∥ ≤ ∥ℎ𝑇 (𝑥) − ℎ∗ (𝑥)∥𝐷𝑆 .

By part (a), we have ∥ℎ𝑇 (𝑥) − ℎ∗ (𝑥)∥ ≤ 𝜙 (2𝑟𝑇 , 𝑥) for any 𝑥 ∈ X. Thus, by taking the expectation
of 𝑥 over density function ` (𝑥), we have

𝑅SPO (ℎ𝑇 ) − 𝑅∗SPO ≤ 𝐷𝑆

∫
𝑥∈X

` (𝑥)𝜙 (2𝑟𝑇 , 𝑥)𝑑𝑥,

which is the result of Theorem 2. □

Proposition 1. Under the same assumptions of Theorem 2, suppose that there exists a constant
𝐶′ > 0, such that 𝜙 (𝜖, 𝑥) ≤ 𝐶′

√
𝜖 . Then, the following guarantees hold simultaneously with probability

at least 1 − 𝛿 for all 𝑇 ≥ 1:
• (a) The excess surrogate risk satisfies 𝑅SPO+ (ℎ𝑇 ) − 𝑅∗SPO+ ≤ Õ(𝑇 −1/2),
• (b) The excess SPO risk satisfies 𝑅SPO (ℎ𝑇 ) − 𝑅∗SPO ≤ Õ(𝑇 −1/4),
• (c) The expectation of the number of labels acquired, E[𝑛𝑇 ], deterministically satisfies E[𝑛𝑇 ] ≤
Õ(𝑇 3/4), when 𝛿 ≤ O(𝑇 −2).

Proof of Proposition 1. Since 𝑟𝑇 ≤ Õ(𝑇 −1/2), the excess surrogate risk is at most 2𝑟𝑇 ≤
Õ(𝑇 −1/2), which is the result of part (a). Since 𝜙 (𝜖, 𝑥) ≤ 𝐶′

√
𝜖 , the excess SPO risk is at most

𝐷𝑆

∫
𝑥∈X ` (𝑥)𝜙 (2𝑟𝑇 , 𝑥)𝑑𝑥 ≤ 𝐷𝑆𝐶

′√2𝑟𝑇 ≤ Õ(𝑇 −1/4), which is the result of part (b). When 𝛿 ≤
O(𝑇 −2), the last term 𝛿𝑇 in part (c) in Theorem 2 is less than Õ(1), so it suffices to focus on the
first term. Since

∑𝑇
𝑡=1 sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)} ≤ 𝐶′

∑𝑇
𝑡=1
√

2𝑟𝑡 ≤
∑𝑇

𝑡=1 Õ(𝑡−1/4) ≤ Õ(𝑇 3/4). □

Proposition 1 provides the bounds for the surrogate risk, SPO risk, and the number of acquired
labels. These results imply that when the expected number of acquired labels is 𝑛, the excess
surrogate risk is at most Õ(𝑛−2/3), which is faster than the typical supervised learning whose risk
is at most Õ(𝑛−1/2). Besides, the excess SPO risk is at most Õ(𝑛−1/3), which is also faster than
the supervised learning bound of Õ(𝑛−1/4) for the polyhedral case in [Liu and Grigas, 2021]. Note
that the above results do not depend on any margin structure of the problem or the low-noise
conditions.
Note that when using the SPO+ loss, the condition in Proposition 1, 𝜙 (𝜖, 𝑥) ≤ 𝐶′

√
𝜖 , imposes

additional conditions on the noise distribution. Examples of these noise conditions are provided
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in Section 4 later. Note that these additional conditions from the existence of 𝜙 make the label
complexity of our algorithm smaller than the minimax lower bound of the sample complexity of
the SPO risk provided in [Hu et al., 2022].
In Sections 3.4 and 3.5, we show that we can further improve the bound for the SPO risk when

the feasible region 𝑆 is a strongly-convex set or considering some low-noise conditions.

3.4 Refined bounds in strongly convex feasible regions
In this section, we provide refined bounds for the SPO risk in Theorem 2 where the feasible region
is a strongly convex set. These results further reduce the label complexity in terms of the SPO risk
in Proposition 1.

Definition 1 provides the definition of the strongly convex feasible region.
Definition 1 (Strongly convex feasible region). Let 𝑓 : R𝑑 → R be a `𝑆 -strongly convex

and 𝐿𝑆 -smooth function for some 𝐿𝑆 ≥ `𝑆 > 0. Suppose that the feasible region 𝑆 is defined by
𝑆 = {𝑤 ∈ R𝑑 : 𝑓 (𝑤) ≤ 𝑟 } for some constant 𝑟 > 𝑓min := min𝑤 𝑓 (𝑤).

Proposition 2 (Refined bounds for the strongly convex feasible regions). Let 𝑆 be a
strongly convex set with parameters 𝐿𝑆 , `𝑆 and 𝑟 . Suppose that the distribution of 𝑐 satisfies that
∥𝑐 ∥ ≥ 𝑐min almost surely for some 𝑐min > 0 and ∥ℎ(𝑥)∥ ≥ 𝑐min for all 𝑥 ∈ X. Then, under the same
setting of Theorem 2 and Proposition 1, we have that for any 𝑇 ≥ 1, the excess SPO risk satisfies
𝑅SPO (ℎ𝑇 ) − 𝑅∗SPO ≤ Õ(𝑇 −1/2).

Together with Proposition 1, Proposition 2 implies that the error bound for the SPO risk in terms
of the expected number of acquired labels 𝑛 is Õ(𝑛−2/3), which is faster than the convergence rate
of the supervised learning, Õ(𝑛−1/2), in [Liu and Grigas, 2021]. Thus, it demonstrates a further
smaller label complexity than supervised learning.

3.5 Refined bounds by low-noise conditions
In this section, we provide a further refined bound for SPO risk under some low-noise conditions,
which are also studied in [Liu et al., 2023]. To define the low-noise condition, we first review the
definition of distance to degeneracy defined in [El Balghiti et al., 2022].

Definition 2. (Distance to Degeneracy, [El Balghiti et al., 2022]). The set of degenerate cost vector
predictions is C𝑜 := {𝑐 ∈ R𝑑 : 𝑃 (𝑐) has multiple optimal solutions}. Given a norm ∥ · ∥ on R𝑑 , the
distance to degeneracy of the prediction 𝑐 is a𝑆 (𝑐) := inf𝑐∈C𝑜 {∥𝑐 − 𝑐 ∥}. □

The distance to degeneracy can be easily computed in the case of a polyhedral feasible region
with known extreme point representations. [El Balghiti et al., 2022] provide the exact formulas of
the distance to degeneracy function in this case.
Next, to describe how the density of the distribution a𝑆 (ℎ∗ (𝑥)) is allocated near the points of

degeneracy, we review the definition of the near-degeneracy function Ψ defined in [Liu et al., 2023]
in Definition 3.
Definition 3 (Near-degeneracy function). The near-degeneracy function Ψ : R+ → [0, 1]

with respect to the distribution of 𝑥 ∼ DX is defined as:

Ψ(𝑏) := P
(

inf
ℎ∗∈H∗

{a𝑆 (ℎ∗ (𝑥))} ≤ 𝑏

)
.

□

The near-degeneracy function Ψ measures the probability that the distance to degeneracy of
ℎ∗ (𝑥) is smaller than 𝑏, when 𝑥 follows the marginal distribution of 𝑥 in DX . Based on the near-
degeneracy function, we can obtain refined guarantees for IWAL-PU.



Submission 1653 14

Theorem 3 (Refined Guarantees for IWAL-PU with near-degneracy function). Sup-
pose that Assumption 1 holds. Under the same setting of Theorem 2, the following guarantees hold
simultaneously with probability at least 1 − 𝛿 for all 𝑇 ≥ 1:
• (a) The excess surrogate risk satisfies 𝑅ℓ (ℎ𝑇 ) − 𝑅∗ℓ ≤ 2𝑟𝑇 ,
• (b) The excess SPO risk satisfies

𝑅SPO (ℎ𝑇 ) − 𝑅∗SPO ≤ 𝐷𝑆Ψ

(
sup
𝑥∈X
{𝜙 (2𝑟𝑡 , 𝑥)}

) ∫
𝑥∈X

` (𝑥)𝜙 (2𝑟𝑇 , 𝑥)𝑑𝑥,

• (c) The expectation of the number of labels acquired, E[𝑛𝑇 ], deterministically satisfies E[𝑛𝑇 ] ≤∑𝑇
𝑡=1 sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)} + 𝛿𝑇 .

Compared to the results in Theorem 2, the SPO risk bound in Theorem 3 has an additional
multiplier Ψ

(
sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)}

)
. This demonstrates the influence of the near-degenearcy function

on the SPO risk. Since Ψ
(
sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)}

)
can be very small or even zero when 𝑟𝑡 is small, this

demonstrate an improvement over Theorem 2.
Next, we consider one example of the low-noise condition, which is characterized by the near-

degeneracy condition, defined in Assumption 3.

Assumption 3 (Near-degeneracy condition). There exist constants 𝑏0, ^ > 0 such that

Ψ(𝑏) = P
(

inf
ℎ∗∈H∗

{a𝑆 (ℎ∗ (𝑥))} ≤ 𝑏

)
≤ (𝑏/𝑏0)^ .

Assumption 3 controls the rate at which Ψ(𝑏) approaches 0 as 𝑏 approaches 0. In other words, for
small enough 𝑏 so that 𝑏

𝑏0
< 1, when the parameter ^ is larger the probability near the degeneracy

is smaller at a faster rate. Proposition 3 below further demonstrates the order of the SPO risk under
the low noise condition.

Proposition 3 (Refined SPO risk bounds under low-noise conditions). Suppose that As-
sumption 3 holds. Under the same setting of Theorem 2 and Proposition 1, we have that for any 𝑇 ≥ 1,
the excess SPO risk satisfies 𝑅SPO (ℎ𝑇 ) − 𝑅∗SPO ≤ Õ(𝑇 −

^+1
4 ).

Proposition 3 indicates that the SPO risk bound by iteration 𝑡 is at most Õ(𝑇 − ^+1
4 ). In comparison,

this SPO risk bound is smaller than the results of the margin-based approach in [Liu et al., 2023],
where the rate is Õ(𝑇 − ^

4 ). Their results do not require the well-specification of the hypothesis
class, while our results need this assumption. Together with part (c) in Proposition 1, Proposition 3
indicates that the SPO risk in terms of the expectation of the acquired labels 𝑛 is at most Õ(𝑛− ^+1

3 ).

4 EXAMPLES OF 𝜙 (𝜖, 𝑥)
In the preceding sections, we assume the function 𝜙 is a squared root function. For example, in
Propositions 1, 2, and 3, we assume 𝜙 (𝜖, 𝑥) ≤ 𝐶′

√
𝜖 for some 𝐶′ > 0. In this section, we provide

some examples of function 𝜙 (𝜖, 𝑥).

Lemma 3 (General predictors). Suppose that X contains finite support. If the distribution
of D satisfies the following condition: there exists a constant 𝐶1 > 0, such that for any ℎ ∈ H ,
E𝑥 [∥ℎ(𝑥) − ℎ∗ (𝑥)∥2] ≤ 𝐶1 · (𝑅ℓ (ℎ) − 𝑅ℓ (ℎ∗)). Then, we have that for any 𝑥 ∈ X and any ℎ ∈ H ,

𝜙 (𝜖, 𝑥) ≤
√︄
𝐶1 · 𝜖
` (𝑥) .
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The condition of Lemma 3 holds for the common squared loss obviously with 𝐶1 = 1. It also
holds for the SPO+ loss under certain noise conditions. For example, in Appendix A in [Liu et al.,
2023], various natural noise conditions for the existence of 𝐶1 in Lemma 3 are studied when using
SPO+ as the surrogate loss. Thus, under these same conditions, Lemma 3 provides an example of
function 𝜙 (𝜖, 𝑥), which implies that 𝜙 (𝜖, 𝑥) is a square root function of 𝜖 .

Lemma 3 indicates that the function 𝜙 (𝜖, 𝑥) becomes larger when the marginal distribution ` (𝑥)
gets larger. Next, when the true prediction model is linear, we can further utilize the directional
information of 𝑥 to derive function 𝜙 .

In this example, suppose that the true model is 𝑐 = Θ∗𝑥 + 𝜖 , where the matrix Θ∗R𝑝×𝑑 is the true
parameter in the linear model and 𝜖 ∈ R𝑝 is the noise vector with zero mean. Define the expectation
Ξ := E[𝑥𝑥𝑇 ]. Without loss of generality, we assume that Ξ is invertible such that all columns in
feature vectors are independent of each other. Given a positive definite matrix𝑀 , we denote the
weighted norm of a vector 𝑥 by ∥𝑥 ∥𝑀 :=

√
𝑥𝑇𝑀𝑥 .

Lemma 4 (Linear predictors). Suppose that the hypothesis class H is set of matrix Θ ∈ R𝑝×𝑑
and Ξ is invertible. If the distribution of D satisfies the following condition: there exists a constant
𝐶1 > 0, such that for any ℎ ∈ H , E𝑥 [∥ℎ(𝑥) − ℎ∗ (𝑥)∥2] ≤ 𝐶1 · (𝑅ℓ (ℎ) − 𝑅ℓ (ℎ∗)). Then, we have that

𝜙 (𝜖, 𝑥) ≤
√︁
𝐶1𝜖 · ∥𝑥 ∥Ξ−1 .

Lemma 4 indicates that the function 𝜙 is upper bounded by a squared root function of ∥𝑥 ∥Ξ−1 .
When the feature vector 𝑥 is along with the direction of the eigenvector with the largest eigenvalue
of Ξ−1, ∥𝑥 ∥Ξ−1 is maximized. On the other hand, if the feature vector 𝑥 is along with the direction
of the eigenvector with the smallest eigenvalue of Ξ−1, then the informational value 𝜙 (𝜖, 𝑥) gets
smaller. It implies that when 𝑥 is in a similar direction to most feature vectors in the underlying
distribution D, the informational value 𝜙 (𝜖, 𝑥) is small. These directional information are the
typical factors to be considered in the fixed design problem of linear regression.

5 NUMERICAL EXPERIMENTS
In this section, we examine the empirical performance of our IWAL-PU algorithm using synthetic
data. Particularly, we consider a personalized treatment design problem. In this setting, we have
three different drugs and each drug has three possible dosage levels: low, medium, and high. To
facilitate doctors to determine the best personalized treatment for each patient, we aim to build a
prediction model that predicts the effect of three drugs on one patient based on the patient’s feature
information. Based on our predicted effect of three drugs at different levels, doctors can determine
the best treatment to minimize the expected negative effect or maximize the positive effect.

We suppose that the following two rules must be followed when determining the best treatment:
(1) The dosage of Drug 2 must be higher than the dosage of Drug 1. (2) At most one of these
three drugs can be given at a high level. We assume that each patient has 5 different independent
covariates, so the patients’ feature vector is in the dimension of six, which includes the interception
term. The cost vector to be predicted is the net effects of all drugs at all possible levels, so the
dimension of the cost vector is 9.
The data generation process is as follows. We assume that the entries in feature vectors are

integers between [−2, 2]. The distribution of the feature vectors ` (𝑥) follows some mixed binomial
distribution, where the center of each binomial distribution is generated randomly. We randomly
generate a binary matrix Θ ∈ B5×9 as the true model. To generate cost vector for each patient, we
assume that 𝑐 = 𝑥Θ + 𝜖 , where 𝜖 ∈ B9 is a noise vector. We assume each entry in the noise vector 𝜖
is randomly drawn from −1, 0, and 1. The hypothesis classH contains all integer matrices in R12×5

whose entries are between [−10, 10].
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We use the SPO+ loss as the surrogate loss. To implement our IWAL-PU algorithm, we need to
calculate the maximum prediction difference of ℎ(𝑥) for all predictors ℎ within the confidence class
𝐻𝑡 . This exact calculation is challenging because our objective is to maximize the ℓ2 norm under
𝑡 − 1 constraints. Thus, we adopt the following approximation method. We first relax the first 𝑡 − 2
constraints of the confidence set of 𝐻𝑡 , i.e., 𝐻𝑡 is the set of {ℎ ∈ H : ℓ̂𝑡 (ℎ) ≤ ℓ̂𝑡,∗ + 𝑟𝑡 }. Then, given
the current predictor ℎ𝑡 , we use the local search idea. We randomly generate a noise coefficient
matrix, where each entry is randomly drawn from -1, 0 and 1. Then, we add this noise matrix to
the current predictor ℎ𝑡 to obtain a random predictor ℎ′. If this predictor ℎ′ is within 𝐻𝑡 , then we
record the prediction ℎ′ (𝑥𝑡 ) in a possible prediction set. We repeat this random local exploration
100 times, and calculate the maximum distance between the vectors in the final possible prediction
set.
Besides the above local approximation method, we can also utilize the insights from Section 4.

Suppose we know the marginal distribution of feature ` (𝑥), but we do not know the outcome in
the test set. Then, we can use 𝑐1

√︁
1/` (𝑥) and 𝑐2

√︁
∥𝑥 ∥Ξ−1 as the approximation of the maximum

prediction error, where 𝑐1 and 𝑐2 are some parameters to be tuned. Using
√︁

1/` (𝑥) allows us to
assign a larger sampling probability for the features with small probability to occur, while using√︁
∥𝑥 ∥Ξ−1 allows us to assign a smaller sampling probability for the features in the less stretched

direction. After collecting the data set, to find the best predictor within the hypothesis class, we
minimize the empirical SPO+ loss by the projected gradient descent method. After each update of
the predictors, we round the value of each entry to the closest integer.

Fig. 1. Risk on the test set during the training process for various sample selection criteria.

The results of 25 independent trials are shown in Figure 1 with 90% confidence intervals. The
x-axis is the number of acquired labels, while the y-axis is the excess SPO risk in the test set. Our
IWAL-PU is the red curve in Figure 1. Compared to the supervised learning result in the blue
curve, it shows that when acquiring the same number of labels in the training set, our IWAL-PU
achieves a lower SPO risk in the test set than the supervised learning algorithm, which always
acquires the labels of samples. We also test two variations of the importance weights by using the
distribution information. The green curve utilizes the direction information of

√︁
∥𝑥 ∥Ξ−1 , while the

orange curve uses the density information of
√︁

1/` (𝑥). These two curves demonstrate that these
heuristic sampling probabilities can achieve a similar performance as the IWAL-PU approach.
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Next, we compare the performance of SPO+ loss and the simple squared ℓ2 norm loss. The simple
squared ℓ2 norm does not consider the downstream decision-making problem when training the
model, while SPO+ loss incorporates the downstream decision-making problem. Figure 2 shows
the distribution of the excess SPO risk on the test set when the number of acquired labels is 35,
36, and 37. It shows that although using the squared loss can have a smaller average risk, but the
variance of the SPO risk is much higher the SPO+ loss. It demonstrates that using the SPO+ loss
can reduce the variance of the risk for the downstream decision-making problem.

Fig. 2. Risk on the test set for different loss functions.

Finally, we compare our IWAL-PU algorithm with the traditional margin-based active learning
approach. Figure 3 shows that our IWAL-PU has a smaller average risk than the margin-based
approach.

Fig. 3. Risk on the test set for margin-based approach.

The reason why IWAL-PU has a smaller risk than the margin-based approach is because of the
structure of distribution. In our numerical experiments, when generating the data, the cost vectors
are not far away from the degenerate cost vectors. Thus, the variation of distance to degeneracy
provides less information about the potential SPO risk than the prediction error. As a consequence,
using the distance to degeneracy as the sample selection approach has a slightly higher risk than
our IWAL-PU approach.
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6 CONCLUSIONS AND FUTURE DIRECTIONS
Our work develops a prediction uncertainty-weighted active learning algorithm for the regression
problem under the general surrogate loss function. When applying this algorithm in the CSLO,
we provide non-asymptotic bounds for the surrogate risk, SPO risk, and label complexity of our
algorithm under various conditions. These bounds show that our IWAL-PU achieves a smaller label
complexity under the supervised learning that acquires the labels of all samples. Our numerical
results demonstrate that our IWAL-PU can reduce the size of the training set when achieving the
same level of SPO risk, compared to the supervised learning and existing active learning algorithm.

There are several interesting future research directions: Our work assumes that the feature space
X and the hypothesis class both have finite supports. In the future, it will be interesting to relax
these assumptions and consider a more general setting with continuous feature space and infinite
predictors in the hypothesis class. It is also worth studying some new active learning algorithms by
integrating our prediction uncertainty-based approach into the existing margin-based approach.
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A COMPLEMENTARY PROOFS
Proof of Proposition 2. Recall that in the proof of Theorem 2, we have that

E[ℓSPO (ℎ𝑇 (𝑥), 𝑐) − ℓSPO (ℎ∗ (𝑥), 𝑐)] ≤ ∥ℎ𝑇 (𝑥) − ℎ∗ (𝑥)∥∥𝑤∗ (ℎ𝑇 (𝑥)) −𝑤∗ (ℎ∗ (𝑥))∥.

By Lemma 2 in [Liu and Grigas, 2021], we have that

∥𝑤∗ (ℎ𝑇 (𝑥)) −𝑤∗ (ℎ∗ (𝑥))∥ ≤
√︁

2𝐿𝑠 (𝑟 − 𝑓min)
`𝑆

 ℎ𝑇 (𝑥)
∥ℎ𝑇 (𝑥)∥

− ℎ∗ (𝑥)
∥ℎ∗ (𝑥)∥

 .
Since ∥ℎ∥ ≥ 𝑐min, we further have that ℎ𝑇 (𝑥)

∥ℎ𝑇 (𝑥)∥
− ℎ∗ (𝑥)
∥ℎ∗ (𝑥)∥

 ≤ 1
𝑐min
∥ℎ𝑇 (𝑥) − ℎ∗ (𝑥)∥.

Thus, combining the above results, we have

E[ℓSPO (ℎ𝑇 (𝑥), 𝑐) − ℓSPO (ℎ∗ (𝑥), 𝑐)] ≤
√︁

2𝐿𝑠 (𝑟 − 𝑓min)
`𝑆𝑐min

∥ℎ𝑇 (𝑥) − ℎ∗ (𝑥)∥2 .
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Since ∥ℎ𝑇 (𝑥) − ℎ∗ (𝑥)∥ ≤ 𝐶′
√
𝑟𝑇 ≤ Õ(𝑇 −1/4), we have that E[ℓSPO (ℎ𝑇 (𝑥), 𝑐) − ℓSPO (ℎ∗ (𝑥), 𝑐)] ≤

Õ(𝑇 −1/2) for all 𝑥 ∈ X. Thus, taking the expectation over 𝑥 ∼ ` (𝑥), we obtain that𝑅SPO (ℎ𝑇 )−𝑅∗SPO ≤
Õ(𝑇 −1/2). □

Proof of Theorem 3. Parts (a) and (c) are the same results as Theorem 2, so the focus of the
proof is to show part (b). Recall that Lemma 2 indicates that

E[ℓSPO (ℎ𝑇 (𝑥), 𝑐) − ℓSPO (ℎ∗ (𝑥), 𝑐)] ≤ ∥ℎ𝑇 (𝑥) − ℎ∗ (𝑥)∥∥𝑤∗ (ℎ𝑇 (𝑥)) −𝑤∗ (ℎ∗ (𝑥))∥.

Thus, when ∥𝑤∗ (ℎ𝑡 (𝑥)) − 𝑤∗ (ℎ∗ (𝑥))∥ = 0, the excess SPO risk at feature 𝑥 is zero. Next, we
show that when a𝑆 (ℎ∗ (𝑥)) ≥ 2𝜙 (2𝑟𝑡 , 𝑥𝑡 ), we have𝑤∗ (ℎ𝑡 (𝑥)) = 𝑤∗ (ℎ∗ (𝑥)) and thus the SPO risk at
𝑥 is zero.

Since a𝑆 is a 1-Lipschitz distance function, we have that |a𝑆 (ℎ∗ (𝑥))−a𝑆 (ℎ𝑡 (𝑥)) | ≤ ∥ℎ𝑡 (𝑥)−ℎ∗ (𝑥)∥,
which implies that

a𝑆 (ℎ𝑡 (𝑥𝑡 )) ≥ a𝑆 (ℎ∗ (𝑥𝑡 )) − ∥ℎ𝑡 (𝑥𝑡 ) − ℎ∗ (𝑥𝑡 )∥ ≥ a𝑆 (ℎ∗ (𝑥𝑡 )) − 𝜙 (2𝑟𝑡 , 𝑥𝑡 ).
Thus, when a𝑆 (ℎ∗ (𝑥)) ≥ 2𝜙 (2𝑟𝑡 , 𝑥𝑡 ), we have that

a𝑆 (ℎ𝑡 (𝑥𝑡 )) ≥ 𝜙 (2𝑟𝑡 , 𝑥𝑡 ) ≥ ∥ℎ𝑡 (𝑥) − ℎ∗ (𝑥)∥.

Thus, by Lemma 1 in [Liu et al., 2023], the condition that ∥ℎ𝑡 (𝑥)−ℎ∗ (𝑥)∥ ≤ max{a𝑆 (ℎ𝑡 (𝑥)), a𝑆 (ℎ∗ (𝑥))}
is satisfied, and we have that𝑤∗ (ℎ𝑡 (𝑥)) = 𝑤∗ (ℎ∗ (𝑥)). By the definition of near-degenearcy function,
the probability that a𝑆 (ℎ∗ (𝑥)) ≤ 2𝜙 (2𝑟𝑡 , 𝑥𝑡 ) is at most Ψ(2𝜙 (2𝑟𝑡 , 𝑥𝑡 )). Thus, the risk at feature 𝑥 is
at most

Ψ(2𝜙 (2𝑟𝑡 , 𝑥𝑡 ))∥ℎ𝑡 (𝑥) − ℎ∗ (𝑥)∥ + (1 − Ψ(2𝜙 (2𝑟𝑡 , 𝑥𝑡 ))) · 0 = Ψ(2𝜙 (2𝑟𝑡 , 𝑥𝑡 ))∥ℎ𝑡 (𝑥) − ℎ∗ (𝑥)∥.

Since ∥ℎ𝑡 (𝑥) − ℎ∗ (𝑥)∥ ≤ 𝜙 (2𝑟𝑡 , 𝑥𝑡 ), by taking the expectation of 𝑥 over probability density ` (𝑥),
we have

𝑅SPO (ℎ𝑇 ) − 𝑅∗SPO ≤ 𝐷𝑆

∫
𝑥∈X

` (𝑥)Ψ (𝜙 (2𝑟𝑡 , 𝑥)) 𝜙 (2𝑟𝑇 , 𝑥)𝑑𝑥

≤ 𝐷𝑆Ψ

(
sup
𝑥∈X
{𝜙 (2𝑟𝑡 , 𝑥)}

) ∫
𝑥∈X

` (𝑥)𝜙 (2𝑟𝑇 , 𝑥)𝑑𝑥,

which is the result in part (b) in Theorem 3. □

Proof of Proposition 3. By Theorem 3, the excess SPO risk is at most

𝑅SPO (ℎ𝑇 ) − 𝑅∗SPO ≤ 𝐷𝑆Ψ

(
sup
𝑥∈X
{𝜙 (2𝑟𝑡 , 𝑥)}

) ∫
𝑥∈X

` (𝑥)𝜙 (2𝑟𝑇 , 𝑥)𝑑𝑥.

Since sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)} ≤ 𝐶′
√

2𝑟𝑡 , 𝑟𝑡 ≤ Õ(𝑡−1/2), we have that sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)} ≤ Õ(𝑡−1/4).
Since Ψ(𝜖) ≤ 𝜖^ , we have that Ψ

(
sup𝑥∈X{𝜙 (2𝑟𝑡 , 𝑥)}

)
≤ Õ(𝑡−^/4).

Thus, we have that 𝑅SPO (ℎ𝑇 ) − 𝑅∗SPO ≤ Õ(𝑡−^/4) · Õ (𝑡−1/4) ≤ Õ(𝑡− ^+1
4 ). □

Proof of Lemma 3. Since X contains finite supports and ∥ℎ(𝑥) − ℎ∗ (𝑥)∥2 ≥ 0 for all 𝑥 ′ ∈ X,
we have that E[∥ℎ(𝑥) − ℎ∗ (𝑥)∥2] = ∑

𝑥 ′∈X ` (𝑥 ′) ∥ℎ(𝑥 ′) − ℎ∗ (𝑥 ′)∥2 ≥ ` (𝑥) ∥ℎ(𝑥) − ℎ∗ (𝑥)∥2. Then,
combining it with the condition in Lemma 3 will yield the result:

∥ℎ(𝑥) − ℎ∗ (𝑥)∥ ≤
√︄

𝐶1

` (𝑥) · (𝑅SPO+ (ℎ) − 𝑅SPO+ (ℎ
∗)).

□
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Proof of Lemma 4. We use 𝛽𝑖 to denote the 𝑖th column in matrix Θ. By the definition of Ξ, we
have that

E[∥ℎ(𝑥) − ℎ∗ (𝑥)∥2] = E
[(Θ̂ − Θ∗)𝑥2

]
=

𝑝∑︁
𝑖=1
∥𝛽𝑖 − 𝛽∗𝑖 ∥Ξ.

By the Cauchy Schwarz inequality, we further have that

∥ℎ(𝑥) − ℎ∗ (𝑥)∥ =
𝑝∑︁
𝑖=1
∥(𝛽𝑖 − 𝛽∗𝑖 )𝑥 ∥ ≤

𝑝∑︁
𝑖=1

√︃
(𝛽𝑖 − 𝛽∗𝑖 )𝑇 (𝛽𝑖 − 𝛽∗𝑖 ) · 𝑥𝑇𝑥 .

Since (𝛽𝑖 − 𝛽∗𝑖 )𝑇 (𝛽𝑖 − 𝛽∗𝑖 ) · 𝑥𝑇𝑥 ≤ ∥𝛽𝑖 − 𝛽∗𝑖 ∥Ξ · ∥𝑥 ∥Ξ−1 , we have that

∥ℎ(𝑥) − ℎ∗ (𝑥)∥ ≤ ∥𝑥 ∥Ξ−1 (
𝑝∑︁
𝑖=1
∥𝛽𝑖 − 𝛽∗𝑖 ∥Ξ) = ∥𝑥 ∥Ξ−1 · (E[∥ℎ(𝑥) − ℎ∗ (𝑥)∥2]).

Combining the above results with E𝑥 [∥ℎ(𝑥) − ℎ∗ (𝑥)∥2] ≤ 𝐶1 · (𝑅ℓ (ℎ) − 𝑅ℓ (ℎ∗)), we can obtain the
form of 𝜙 in Lemma 4. □
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